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Introduction A definition of segmentation

• Image segmentation has a (very) long history: Brice and Fenema (1970),
Pavlidis (1972), Rosenfeld and Kak (1976).



Introduction A definition of segmentation

• Segmentation is ill-defined:



Introduction A definition of segmentation

• A division of the pixels (voxels) of an image into distinct groups (“objects”,
“organs”).

• The set of group boundaries.
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Pre-history Region growing (e.g. Pavlidis 1972)

• Initialization: take all pixels as regions.

• For every pair of regions (Ωi, Ωj) such that var(Ωi ∪Ωj) < λ, merge Ωi and
Ωj.

• How do we choose the threshold λ?

• No control on the smoothness of the boundaries.

• Solves the constrained optimization problem (Morel-Solimini 1995):

min
var(Ωi)<λ

Card({Ωi})

• λ is a scale parameter.



Pre-history The Brice and Fenema (1970) phagocyte heuristics

• Start with the previous algorithm (λ = 0).

• Given two adjacent regions Ωi and Ωj, compute the length of the “weak
part” of their common boundary ∂(Ωi,Ωj) (jump of the intensity across the
boundary is less than some threshold).

• Merge Ωi and Ωj if the ratio of the length of the weak part of ∂(Ωi,Ωj) and
the length of ∂(Ωi,Ωj) is larger than a second threshold.

• Solves the optimization problem (Morel-Solimini 1995):

E(∂Ω) = µ length(∂Ω)−
∫

∂Ω

∣∣∣∣
∂I

∂n

∣∣∣∣ dσ

• Primitive version of the “snakes” technique.
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The formalization of region growing (1985, 1989) Mumford-Shah

• A segmentation of an image I0 is a pair (∂Ω, I), where I is some
approximation of I0. I0 is defined in Ω.

• The energy associated with a segmentation (∂Ω, I) is the sum of three
terms:

E(∂Ω, I) = α

∫

Ω\∂Ω

|∇I|2 dx+ βlength(∂Ω) +

∫

Ω\∂Ω

(I − I0)2 dx

• If I is imposed to be constant within each region

E(∂Ω, I) = αlength(∂Ω) +

∫

Ω\∂Ω

(I − I0)2 dx



The conjecture Mumford-Shah

• There exist minimal segmentations made of a finite set of C1 curves.

• What is known (Morel-Solimini 1995, Aubert-Kornprobst 2000):

– There exist minimal segmentations (non-uniqueness).
– The set of segmentations is small (compact).
– The boundaries are rectifiable (finite length).
– The boundaries can be enclosed in a single rectifiable curve.



Finding minima of the functional Mumford-Shah

• Initialization. Set I0 = g, piecewise constant on the pixels. ∂Ω0 is the union
of the boundaries of all pixels.

• Recursive merging. Merge recursively all pairs of regions whose merging
decreases the energy E.

• The scale parameter α can be adjusted.

• The full Mumford-Shah functional can be minimized using the ideas of Γ-
convergence (De Giorgi).

• Practically nothing is known for 3D or 3D+t images (see the recent book by
Guy David)



Results Mumford-Shah
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Snakes Snakes: Kass-Witkin-Terzopoulos (1987)

• Automatically detect contours of objects.

• A contour pixel x: ‖∇I(x)‖ is high.

• Contrast inversion: function g.

• Energy function:

E(c) =

∫ 1

0

‖c′(q)‖2 dq + β

∫ 1

0

‖c”(q)‖2 dq
︸ ︷︷ ︸

Internal energy

+ λ

∫ 1

0

g2(‖∇I(c(q))‖) dq
︸ ︷︷ ︸

External energy

• This energy is minimized using the associated Euler-Lagrange equations.



Snakes Snakes: problems

• E(c) is not intrinsic.

• Impossible to detect more than one (changes in topology) convex object.

• Numerical problems occur when solving

{
∂E
∂t

(t, q) = −∇E(t, q)

c(0, q) = c0(q)



Snakes Geodesic snakes (Caselles-Kimmel-Sapiro 1995)

• Define the energy (Riemaniann metric)

E2(c) =

∫ 1

0

g(‖∇I(c(q))‖)‖c′(q)‖ dq

• Intrinsic criterion.

• Aubert and Blanc-Ferraud (1998) showed that E is equivalent to E2.

• Euler-Lagrange and gradient descent:

∂E

∂t
= (κg −∇g · n)n



Snakes Geodesic snakes: implementation by level-sets

• Basic idea (Dervieux-Thomasset 1979-80, Osher-Sethian 1988):

p

u(M(p, t), t) = 0

x

y z = u(x, y, t)

z

y

x

z = 0

M(p, t)

• Partial Differential Equation:

∂u

∂t
= g(‖∇I‖)div

( ∇u
‖∇u‖

)
‖∇u‖+∇g · ∇u+ boundary conditions

• There is a unique viscosity solution (Crandall-Lions 1982) to the previous
equation (Caselles-Catte-Coll-Dibos 1993).

• u(t, x) asymptotically fits the desired contour.



Snakes Application to cortex segmentation (Pons-Segonne 2004)

• Proceed in four steps

1. Segmentation of the skin surface
The geodesic snake shrinks until it reaches in the
volume image high intensities corresponding to
the skin.



Snakes Brain outline

• Proceed in four steps

1. Segmentation of the skin surface
The geodesic snake shrinks until it reaches in the
volume image high intensities corresponding to
the skin.

2. Segmentation of the brain outlines
A geodesic snake at the center of the brain inflates
until it reaches in the volume image low intensities
corresponding to the CSF or to the skull.



Snakes Classification

• Proceed in four steps

3. Classification of brain tissues into
three classes
Separation of the grey matter, the white
matter and the CSF + correction of the
nonunifomities in the MR image.



Snakes Classification

• Proceed in four steps

3. Classification of brain tissues into
three classes
Separation of the grey matter, the white
matter and the CSF + correction of the
nonunifomities in the MR image.

4. Extraction of the internal and external
surfaces of the cortex
Two surfaces approximate the results of the
classification while guaranteeing a correct
geometry (J.Prince et al. 2003)



Results: correction of the inhomogeneities Segmentation

Initial image Corrected image



Results : monkey Segmentation

The same techniques can be applied to monkey data, thereby allowing to
verify their pertinence (e.g., Guy Orban’s lab. in Leuven)

MR Image Left hemisphere of the cortex



Geodesic snakes Generalization to 3D curves (Lorigo 2000)

• Geodesic snakes are co-dimension 1.

• Goal: detect and characterize the shape and size of blood vessels in MRA
images.

• Methodology: generalization of the previous approach to curves in 3D
space through the idea of ε-level sets.

Γε

CC

dΠ

.
C

C’(p)

C(p)

d

• It is equivalent to smoothing with the smallest principal curvature rather
than with the mean curvature.



Geodesic snakes Generalization to 3D curves: aorta data (courtesy
Siemens)



Geodesic snakes Generalization to 3D curves: brain vessels
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Active regions

• The contour approach is limited to the contours!

• Let Ω be a region, define:

J(Ω) =

∫

Ω

f(x,Ω) dx

• Examples of functions f :
1. f(x,Ω) = (I(x)− µΩ)2 µΩ mean intensity in Ω.
2. f(x,Ω) = ρ(σΩ) σ2

Ω intensity variance in Ω.
3. f(x,Ω) = − log hΩ(I(x)) hΩ intensity histogram in Ω.



Definition of an energy: binary case Active regions

E(R) = J(Ω) + J(Ωc) + λ length(∂Ω)

• Problem: How do we compute the derivative of E with respect to the
boundaries shape.

• Answer: Use the tools of shape derivatives invented by, e.g. Jacques
Solomon Hadamard.

• More recent work by Delfour and Zolesio 2001

• See also the field of Shape Optimization.



An example: log likelihood energy (Schnörr 04) Active regions

• Histogram estimation by Parzen windowing: non parametric case

• Shape derivative:

1

| Ω |

∫

Ω

gσ(I(x)− I(y))

p(I(x),Ω)
dx− 1

| Ωc |

∫

Ωc

gσ(I(x)− I(y))

p(I(x),Ωc)
dx−log

(
p(I(y),Ω)

p(I(y),Ωc)

)

• Implementation by level-sets (Vese and Chan 2001, Rousson and Deriche
2002): N level sets can find up to 2N regions:

4 regions segmentation
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Color and texture The structure tensor

• Color is multidimensional: use parametric representations.

• Idea based on the classical structure tensor::

Jσ = Gσ ∗ (∇I∇I>) =

(
Gσ ∗ I2

x Gσ ∗ IxIy
Gσ ∗ IxIy Gσ ∗ I2

y

)

where Gσ is a Gaussian kernel with standard deviation σ.

• Properties:

– only 3 feature channels at a fixed scale (reduced number compared to a set of Gabor
filters),

– include orientation information,

• For color images is: Jσ = Gσ ∗
(
∑3

i=1∇Ii∇I>i

)
.



Color and texture Example: Intensity and Texture (Rousson, Deriche et al.
2002-today)

• Results on gray images:
u(t = 0) = (I, |Ix|, |Iy|,±

√
±IxIy))

init 1 init 2 init 1 init 2 init 1 init 2



Color and texture Example: Color and Texture (Rousson, Deriche et al.
2002-today)

• Results on color images:

u(t = 0) = (Il, Ia, Ib,

√
J

(1,1)
σ ,

√
J

(2,2)
σ ,±2

√
±J (1,2)

σ )



Motion The structure tensor again

• Optic flow constraint: Ixu+ Iyv + Iz = 0

• Lucas and Kanade: E(u, v) = 1
2

∫
Bσ(x0,y0)

(Ixu+ Iyv + Iz)
2dxdy

• A minimum (u, v) of E satisfies ∂uE = 0 and ∂vE = 0, leading to the linear
system:

(
Gσ ∗ I2

x Gσ ∗ IxIy
Gσ ∗ IxIy Gσ ∗ I2

y

)(
u

v

)
=

(
−Gσ ∗ IxIz
−Gσ ∗ IyIz

)
.

Instead of the sharp window Bσ, we use a convolution with a Gaussian
kernel Gσ.

• Any other method can be used for OF extraction.



Motion Example: Color, Motion and Texture (Paragios, Rousson, Deriche et
al. 2002-today)

Tracking of 3 players in the soccer sequence (180× 130× 40).
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More structure dtMRI

Diffusion Tensor Imagery:
Understanding the structure of neural fibers.



How to segment these fibers ? dtMRI

• Diffusion tensor imagery : a MR modality that measures the motion of
water molecules in tissues.

⇒ The water molecules move more easily along the fibers.

⇒ dtMRI allows us to measure the spatial structure of these fiber bundles



MR images of the diffusion tensord : Principle (1) dtMRI

• MRI allows, under some circumstances, to measure the amount of
diffusion of water molecules inside the tissues.

• We acquire a large number of volume images of the brain using different
orientations and intensities of the magnetic field.

(An example with 7 images)



MR images of the diffusion tensor : Principle (2) dtMRI

• From these “raw” images, a volume of Diffusion Tensors can be estimated.

• These tensors characterize the amount of diffusion of the water
molecules in the tissues.

• We can represent them with ellipsoids :



Riemaniann structure dtMRI

• Key observation: the set of positive definite matrixes can be endowed
with a structure of Riemannian space derived from the Fisher information
matrix

• The information geodesic distance D was shown to be (S.T. Jensen 1976
cited in Atkinson and Mitchell 1981):

D(Σ1,Σ2) =
1

2
tr(log2(Σ

−1/2
1 Σ2Σ

−1/2
1 ))

• Expressions can be derived for the geodesics, distance, mean, covariance
matrix, Riemann-Christoffel and Ricci tensors, Scalar curvature.

• These ideas are actively explored in (Lenglet, Rousson et al. 2004, Pennec
et al. 2004, Joshi et al. 2004).



DT-MRI Segmentation dtMRI

• Region-based segmentation of DTI may help in analyzing white matter
structures.

• The active region formalism can be used in the framework of the
Riemannian space of positive definite matrixes.



Experiments on synthetic data (Lenglet, Rousson et al. 2004) dtMRI

• Fibers bundle junction:



Real data (Lenglet, Rousson et al. 2004) dtMRI

• Corpus callosum:
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Modeling fMRI datasets fMRI modeling

fMRI time courses reflect
task-related activity + physiological confounds + measurement errors +
spontaneous activity ...



Abstraction of the problem fMRI modeling

Find reduced representations of the data that retain its essential features.
i.e. account for (dis-)similarities of the temporal patterns across the dataset.

Question : How to model the signal space globally?



Some approaches fMRI modeling

Clustering PCA

ICA LE



The Laplacian eigenmap solution fMRI modeling

Our hypotheses:

• The signal lives in a d-dimensional submanifoldM of RT

d is not known a priori.

• The different dimensions of M may be interpreted as the main effects
(physiology, acquisition, activation, connectivity).

The Laplacian embedding technique (Belkin and Niyogi 2003) yields an
estimate of d and a parameterization ofM, i.e. a data-driven characterization
of the signal space.

• It is mathematically equivalent to the graph-cuts technique (Kolmogorov
and Zabih 2002, Shi and Malik).

• Its implementation is closely related to solving the heat equation on the
unknown manifold (Laplace-Beltrami operator).



Localizer experiment (Bertrand Thirion 2004) fMRI modeling

• 0ne-session event-related experiment

• Localizes the main brain functions: primary visual areas, primary auditory
areas, reading, computation, motor (left and right hand clicks).

• Standard preprocessing: slice timing, band-pass filtering, spatial
normalization.

Exploratory analysis with Laplacian embedding approach.



Localizer experiment fMRI modeling

LE 1 LE 2 LE 3 LE 4 LE 5
z=8mm z=44mm z=0mm z=4mm z=56mm

visu-auditory computation understanding prim. visu motor
LE 6 LE 7 LE 8 LE 9

z=52mm z=-8mm z=36mm z=52mm

motor ? ? L-R motor



Example2: Supervised fMRI modeling

• 1 session of real data [Vanduffel-Fize-etal:01]

• Study of monkey vision: passive observation of static/moving textures

• N = 12320 voxels, T = 120 scans

• After estimation of voxel-based hemodynamic responses from multi-session
data, classification of the resulting hrf’s.



Supervised analysis: Classification of hemodynamic responses
(Bertrand Thirion 2004) fMRI modeling

Laplacian eigenvalues Laplacian 2D representation Time courses

Spatial distribution of the clusters
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Conclusion and Perspectives: Mathematics

• Clear increase in the mathematical sophistication of image segmenters.

• We are going away from 19th century mathematics and beginning to use
20th century maths!

• What are the challenges:

1. Well-posedness.
2. Numerical schemes.
3. Geometry, in particular random geometry.



Conclusion and Perspectives: Segmentation

• We are clearly driven by the technology. . . but

– we use very few geometric and physical image formation models.

• We would very much like to use prior knowledge, to acquire knowledge
automatically . . . but

– we use very few of the effective models of data distribution and
classification procedures developed (statistical learning theory and
theoretical computer science).

• We see very little of our segmentation, matching, warping programs in the
hospital . . . but

– we build very few systems.



The final word

• Mathematics are necessary but not sufficient . . .


