Image segmentation, a historical and mathematical perspective

Olivier Faugeras

Olivier Faugeras

Outline

N CAL

Ń

- Introduction
- Pre-history: the non-variational approach
- Mumford-Shah
- Snakes and variations thereof
- Active regions
- More features
- More structure
- More dimensions
- Conclusion

Introduction

Odvssee Lab

 Image segmentation has a (very) long history: Brice and Fenema (1970), Pavlidis (1972), Rosenfeld and Kak (1976).

Introduction

A III

• Segmentation is ill-defined:

ļ

- A division of the pixels (voxels) of an image into distinct groups ("objects", "organs").
- The set of group boundaries.

Outline

No.

Ń

- Introduction
- Pre-history: the non-variational approach
- Mumford-Shah
- Snakes and variations thereof
- Active regions
- More features
- More structure
- More dimensions
- Conclusion

Pre-history

- Initialization: take all pixels as regions.
- For every pair of regions (Ω_i, Ω_j) such that $var(\Omega_i \cup \Omega_j) < \lambda$, merge Ω_i and Ω_j .
- How do we choose the threshold λ ?
- No control on the smoothness of the boundaries.
- Solves the constrained optimization problem (Morel-Solimini 1995):

 $\min_{var(\Omega_i) < \lambda} Card(\{\Omega_i\})$

• λ is a scale parameter.

Pre-history

- Start with the previous algorithm ($\lambda = 0$).
- Given two adjacent regions Ω_i and Ω_j, compute the length of the "weak part" of their common boundary ∂(Ω_i, Ω_j) (jump of the intensity across the boundary is less than some threshold).
- Merge Ω_i and Ω_j if the ratio of the length of the weak part of ∂(Ω_i, Ω_j) and the length of ∂(Ω_i, Ω_j) is larger than a second threshold.
- Solves the optimization problem (Morel-Solimini 1995):

$$E(\partial \Omega) = \mu \, length(\partial \Omega) - \int_{\partial \Omega} \left| \frac{\partial I}{\partial n} \right| \, d\sigma$$

• Primitive version of the "snakes" technique.

Outline

N N

Ń

- Introduction
- Pre-history: the non-variational approach
- Mumford-Shah
- Snakes and variations thereof
- Active regions
- More features
- More structure
- More dimensions
- Conclusion

• A segmentation of an image I_0 is a pair $(\partial \Omega, I)$, where I is some approximation of I_0 . I_0 is defined in Ω .

• The energy associated with a segmentation $(\partial \Omega, I)$ is the sum of three terms:

$$E(\partial\Omega, I) = \alpha \int_{\Omega\setminus\partial\Omega} |\nabla I|^2 \, dx + \beta length(\partial\Omega) + \int_{\Omega\setminus\partial\Omega} (I - I_0)^2 \, dx$$

• If *I* is imposed to be constant within each region

$$E(\partial\Omega, I) = \alpha length(\partial\Omega) + \int_{\Omega\setminus\partial\Omega} (I - I_0)^2 \, dx$$

The conjecture

- There exist minimal segmentations made of a finite set of C^1 curves.
- What is known (Morel-Solimini 1995, Aubert-Kornprobst 2000):
 - There exist minimal segmentations (non-uniqueness).
 - The set of segmentations is small (compact).
 - The boundaries are rectifiable (finite length).
 - The boundaries can be enclosed in a single rectifiable curve.

- Initialization. Set $I_0 = g$, piecewise constant on the pixels. $\partial \Omega_0$ is the union of the boundaries of all pixels.
- **Recursive merging**. Merge recursively all pairs of regions whose merging decreases the energy *E*.
- The scale parameter α can be adjusted.
- The full Mumford-Shah functional can be minimized using the ideas of Γ -convergence (De Giorgi).
- Practically nothing is known for 3D or 3D+t images (see the recent book by Guy David)

N CON

Í

Ń

Plan

N

- Introduction
- Pre-history: the non-variational approach
- Mumford-Shah
- Snakes and variations thereof
- Active regions
- More features
- More structure
- More dimensions
- Conclusion

- Automatically detect contours of objects.
- A contour pixel x: $\|\nabla I(x)\|$ is high.
- Contrast inversion: function g.
- Energy function:

Ń

$$E(c) = \underbrace{\int_0^1 \|c'(q)\|^2 dq}_{\text{Internal energy}} + \beta \int_0^1 \|c''(q)\|^2 dq + \underbrace{\lambda \int_0^1 g^2(\|\nabla I(c(q))\|) dq}_{\text{External energy}} + \underbrace{\lambda \int_0^1 g^2(\|\nabla I(c(q))$$

This energy is minimized using the associated Euler-Lagrange equations.

• E(c) is not intrinsic.

• Impossible to detect more than one (changes in topology) convex object.

• Numerical problems occur when solving

$$\begin{cases} \frac{\partial E}{\partial t}(t,q) = -\nabla E(t,q) \\ c(0,q) = c_0(q) \end{cases}$$

• Define the energy (Riemaniann metric)

$$E_2(c) = \int_0^1 g(\|\nabla I(c(q))\|) \|c'(q)\| \, dq$$

• Intrinsic criterion.

• Aubert and Blanc-Ferraud (1998) showed that E is equivalent to E_2 .

• Euler-Lagrange and gradient descent:

$$\frac{\partial E}{\partial t} = (\kappa g - \nabla g \cdot n)n$$

• Basic idea (Dervieux-Thomasset 1979-80, Osher-Sethian 1988):

 $u(M(\mathbf{p},t),t) = 0$

• Partial Differential Equation:

$$\frac{\partial u}{\partial t} = g(\|\nabla I\|) \operatorname{div} \left(\frac{\nabla u}{\|\nabla u\|}\right) \|\nabla u\| + \nabla g \cdot \nabla u + \operatorname{boundary \ conditions}$$

- There is a unique viscosity solution (Crandall-Lions 1982) to the previous equation (Caselles-Catte-Coll-Dibos 1993).
- u(t,x) asymptotically fits the desired contour.

• Proceed in four steps

1. Segmentation of the skin surface

The geodesic snake shrinks until it reaches in the volume image high intensities corresponding to the skin.

Brain outline

• Proceed in four steps

1. Segmentation of the skin surface

The geodesic snake shrinks until it reaches in the volume image high intensities corresponding to the skin.

2. Segmentation of the brain outlines

A geodesic snake at the center of the brain inflates until it reaches in the volume image low intensities corresponding to the CSF or to the skull.

THE S

Classification

• Proceed in four steps

3. Classification of brain tissues into three classes

Separation of the grey matter, the white matter and the CSF + correction of the nonunifomities in the MR image.

Classification

• Proceed in four steps

3. Classification of brain tissues into three classes

Separation of the grey matter, the white matter and the CSF + correction of the nonunifomities in the MR image.

4. Extraction of the internal and external surfaces of the cortex

Two surfaces approximate the results of the classification while guaranteeing a correct geometry (J.Prince et al. 2003)

Results: correction of the inhomogeneities

P

5

N

Segmentation

Initial image

Corrected image

Results : monkey

The same techniques can be applied **to monkey data**, thereby allowing to verify their pertinence (e.g., Guy Orban's lab. in Leuven)

MR Image

Left hemisphere of the cortex

Geodesic snakes

- Geodesic snakes are co-dimension 1.
- **Goal**: detect and characterize the shape and size of blood vessels in MRA images.
- Methodology: generalization of the previous approach to curves in 3D space through the idea of ε -level sets.

• It is equivalent to smoothing with the **smallest** principal curvature rather than with the **mean** curvature.

Geodesic snakes

Generalization to 3D curves: aorta data (courtesy

Siemens)

N.C.

ļ

Geodesic snakes

THE A

ļ

Generalization to 3D curves: brain vessels

Outline

N N

Ń

- Introduction
- Pre-history: the non-variational approach
- Mumford-Shah
- Snakes and variations thereof
- Active regions
- More features
- More structure
- More dimensions
- Conclusion

Active regions

J

• The contour approach is limited to the contours!

• Let Ω be a region, define:

$$J(\Omega) = \int_{\Omega} f(x, \Omega) \, dx$$

Examples of functions f:
1. f(x, Ω) = (I(x) - μ_Ω)² μ_Ω mean intensity in Ω.
2. f(x, Ω) = ρ(σ_Ω) σ²_Ω intensity variance in Ω.
3. f(x, Ω) = -log h_Ω(I(x)) h_Ω intensity histogram in Ω.

Odvssee Lab

 $E(R) = J(\Omega) + J(\Omega^c) + \lambda \, length(\partial \Omega)$

- **Problem**: How do we compute the derivative of *E* with respect to the boundaries shape.
- **Answer**: Use the tools of shape derivatives invented by, e.g. Jacques Solomon Hadamard.
- More recent work by Delfour and Zolesio 2001
- See also the field of Shape Optimization.

An example: log likelihood energy (Schnörr 04)

- Histogram estimation by Parzen windowing: non parametric case
- Shape derivative:

$$\frac{1}{|\Omega|} \int_{\Omega} \frac{g_{\sigma}(\boldsymbol{I}(\boldsymbol{x}) - \boldsymbol{I}(\boldsymbol{y}))}{p(\boldsymbol{I}(\boldsymbol{x}), \Omega)} d\boldsymbol{x} - \frac{1}{|\Omega^{c}|} \int_{\Omega^{c}} \frac{g_{\sigma}(\boldsymbol{I}(\boldsymbol{x}) - \boldsymbol{I}(\boldsymbol{y}))}{p(\boldsymbol{I}(\boldsymbol{x}), \Omega^{c})} d\boldsymbol{x} - \log\left(\frac{p(\boldsymbol{I}(\boldsymbol{y}), \Omega)}{p(\boldsymbol{I}(\boldsymbol{y}), \Omega^{c})}\right) d\boldsymbol{x}$$

• Implementation by level-sets (Vese and Chan 2001, Rousson and Deriche 2002): N level sets can find up to 2^N regions:

4 regions segmentation

Outline

N N

Ń

- Introduction
- Pre-history: the non-variational approach
- Mumford-Shah
- Snakes and variations thereof
- Active regions
- More features
- More structure
- More dimensions
- Conclusion

Color and texture

N CON

- Color is multidimensional: use parametric representations.
- Idea based on the classical structure tensor::

$$J_{\sigma} = G_{\sigma} * (\nabla I \nabla I^{\top}) = \begin{pmatrix} G_{\sigma} * I_x^2 & G_{\sigma} * I_x I_y \\ G_{\sigma} * I_x I_y & G_{\sigma} * I_y^2 \end{pmatrix}$$

where G_{σ} is a Gaussian kernel with standard deviation σ .

- Properties:
 - only 3 feature channels at a fixed scale (reduced number compared to a set of Gabor filters),
 - include orientation information,

• For color images is:
$$J_{\sigma} = G_{\sigma} * \left(\sum_{i=1}^{3} \nabla I_i \nabla I_i^{\top} \right).$$

Color and texture *Example: Intensity and Texture (Rousson, Deriche et al. 2002-today)*

10

ļ

Ń

Color and texture 2002-today)

Example: Color and Texture (Rousson, Deriche et al.

• Results on color images:

 $u(t=0) = (I_l, I_a, I_b, \sqrt{J_{\sigma}^{(1,1)}}, \sqrt{J_{\sigma}^{(2,2)}}, \pm 2\sqrt{\pm J_{\sigma}^{(1,2)}})$

- Optic flow constraint: $I_x u + I_y v + I_z = 0$
- Lucas and Kanade: $E(u,v) = \frac{1}{2} \int_{B_{\sigma}(x_0,y_0)} (I_x u + I_y v + I_z)^2 dx dy$
- A minimum (u, v) of E satisfies \(\partial_u E = 0\) and \(\partial_v E = 0\), leading to the linear system:

$$\begin{pmatrix} G_{\sigma} * I_x^2 & G_{\sigma} * I_x I_y \\ G_{\sigma} * I_x I_y & G_{\sigma} * I_y^2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} -G_{\sigma} * I_x I_z \\ -G_{\sigma} * I_y I_z \end{pmatrix}.$$

Instead of the sharp window B_{σ} , we use a convolution with a Gaussian kernel G_{σ} .

• Any other method can be used for OF extraction.

Motion *Example: Color, Motion and Texture (Paragios, Rousson, Deriche et al. 2002-today)*

1

ļ

Tracking of 3 players in the *soccer* sequence $(180 \times 130 \times 40)$.

Outline

N N

Ń

- Introduction
- Pre-history: the non-variational approach
- Mumford-Shah
- Snakes and variations thereof
- Active regions
- More features
- More structure
- More dimensions
- Conclusion

Diffusion Tensor Imagery: Understanding the structure of neural fibers.

dtMRI

- **Diffusion tensor imagery** : a MR modality that measures the motion of water molecules in tissues.
- \Rightarrow The water molecules move more easily along the fibers.
- \Rightarrow dtMRI allows us to measure the spatial structure of these fiber bundles

dtMRI

- MRI allows, under some circumstances, to measure the amount of diffusion of water molecules inside the tissues.
- We acquire a large number of volume images of the brain using different orientations and intensities of the magnetic field.

(An example with 7 images)

MR images of the diffusion tensor : Principle (2)

- From these "raw" images, a volume of **Diffusion Tensors** can be estimated.
- These tensors characterize the amount of diffusion of the water molecules in the tissues.
- We can represent them with ellipsoids :

INRIA Odyssee Lab

dtMRI

Riemaniann structure

- Key observation: the set of positive definite matrixes can be endowed with a structure of Riemannian space derived from the Fisher information matrix
- The *information* geodesic distance \mathcal{D} was shown to be (S.T. Jensen 1976 cited in Atkinson and Mitchell 1981):

$$\mathcal{D}(\Sigma_1, \Sigma_2) = \frac{1}{2} \operatorname{tr}(\log^2(\Sigma_1^{-1/2} \Sigma_2 \Sigma_1^{-1/2}))$$

- Expressions can be derived for the geodesics, distance, mean, covariance matrix, Riemann-Christoffel and Ricci tensors, Scalar curvature.
- These ideas are actively explored in (Lenglet, Rousson et al. 2004, Pennec et al. 2004, Joshi et al. 2004).

INRIA vssee Lab 家の

- Region-based segmentation of DTI may help in analyzing white matter structures.
- The active region formalism can be used in the framework of the Riemannian space of positive definite matrixes.

• Fibers bundle junction:

• Corpus callosum:

I

dtMRI

Outline

N CA IN

Ń

- Introduction
- Pre-history: the non-variational approach
- Mumford-Shah
- Snakes and variations thereof
- Active regions
- More features
- More structure
- More dimensions
- Conclusion

Modeling fMRI datasets

ļ

fMRI modeling

fMRI time courses reflect task-related activity + physiological confounds + measurement errors + spontaneous activity ...

Abstraction of the problem

Find **reduced representations** of the data that retain its *essential features*. i.e. account for (dis-)similarities of the temporal patterns across the dataset.

Question : How to model the signal space globally?

Some approaches

CA I

I

N

fMRI modeling

Ì

Our hypotheses:

- The signal lives in a d-dimensional submanifold \mathcal{M} of \mathbb{R}^T d is not known a priori.
- The different dimensions of \mathcal{M} may be interpreted as the main effects (physiology, acquisition, activation, connectivity).

The Laplacian embedding technique (Belkin and Niyogi 2003) yields an estimate of d and a parameterization of \mathcal{M} , i.e. a data-driven characterization of the signal space.

- It is mathematically equivalent to the **graph-cuts** technique (Kolmogorov and Zabih 2002, Shi and Malik).
- Its implementation is closely related to solving the heat equation on the unknown manifold (Laplace-Beltrami operator).

Localizer experiment (Bertrand Thirion 2004)

• One-session event-related experiment

- Localizes the main brain functions: primary visual areas, primary auditory areas, reading, computation, motor (left and right hand clicks).
- Standard preprocessing: slice timing, band-pass filtering, spatial normalization.

Exploratory analysis with Laplacian embedding approach.

Localizer experiment

fMRI modeling

Example2: Supervised

- 1 session of real data [Vanduffel-Fize-etal:01]
- Study of monkey vision: passive observation of static/moving textures
- N = 12320 voxels, T = 120 scans
- After estimation of voxel-based hemodynamic responses from multi-session data, classification of the resulting *hrf's*.

Supervised analysis:Classification of hemodynamic responses(Bertrand Thirion 2004)fMRI modeling

Laplacian eigenvalues

Laplacian 2D representation

Spatial distribution of the clusters

Time courses

Outline

N N

Ń

- Introduction
- Pre-history: the non-variational approach
- Mumford-Shah
- Snakes and variations thereof
- Active regions
- More features
- More structure
- More dimensions
- Conclusion

Conclusion and Perspectives: Mathematics

- Clear increase in the mathematical sophistication of image segmenters.
- We are going away from 19th century mathematics and beginning to use 20th century maths!
- What are the challenges:
 - 1. Well-posedness.

- 2. Numerical schemes.
- 3. Geometry, in particular random geometry.

Conclusion and Perspectives: Segmentation

- We are clearly driven by the technology...but
 - we use very few geometric and physical image formation models.
- We would very much like to use prior knowledge, to acquire knowledge automatically ... but
 - we use very few of the effective models of data distribution and classification procedures developed (statistical learning theory and theoretical computer science).
- We see very little of our segmentation, matching, warping programs in the hospital ... but
 - we build very few systems.

The final word

Ń

• Mathematics are necessary but not sufficient ...

