Kinematics, position and force control issue in minimally invasive surgery

G. Morel* and P. Poignet**

* LRP, Paris, France
** LIRMM, Montpellier, France

morel@robot.jussieu.fr
poignet@lirmm.fr
Introduction

Minimally invasive surgery (MIS)

- Long instruments
- Small incisions
- Endoscope for visual feedback
Drawbacks or difficulties in MIS

- Penetration point accessibility, loss of degree of freedom or mobility, reduced orientation capabilities and limited amplitude of motions

- Hand-eye coordination (reverse hand motion, scaling of motion,…)

- Loss of natural haptic feedback increased difficulty for knots, force sensing, lead traction,…

- Reduced point of view
The surgeon manipulates instruments through a master device. The instruments are moved by robotized manipulator.
Open problems

- Kinematics (guaranteeing trocar constraint, redundancy, …)
- Distal mobilities for increasing manipulability or dexterity inside patient
- Technology (mechanism, actuator, sensor, space occupancy, …)
- Control architecture (accuracy, force feedback, correct hand–eye coordination, scaling position and/or force, …)
- Gesture assistance functions (physiological motion compensation, automatic camera guidance, …)
- Safety
Introduction

General objective: Design **kinematics** and synthesize a **control architecture** providing **force feedback** and **augmented vision** of the operating site to the surgeon by means of a **teleoperated** master slave system with **high dexterity**.
Contents

❌ Kinematics and motion control

 • Carrier

 • **Constrained kinematics** / spherical wrist
 • Position control (geometric control approaches, dynamic decoupling control,…)
 • Force control

 • High dexterity instrument

❌ Interaction control

❌ Teleoperated systems
Arms with kinematics constraint
- The idea is to create a mechanical structure able to give the tool one SPECIFIC type of motion
- Mostly applied to mini-invasive surgery

M.I.S. a tool (shape ⇔ cylinder) passes through a trocar (shape ⇔ ⊗ annulus)

The tool axis always passes in one “fixed” point

Two constraints (translation is constrained in two directions)
Gruebler formula: Mobility = (Total dof) – (6 x Nb of loops)

How many dof for respecting the constraints?

Mobility \rightarrow Tx, Ty, Tz \rightarrow 3

3 = (4 + ?) – (6 x 1)
\Rightarrow ? = 5

Mobility \rightarrow Tx, Ty, Tz, Rz \rightarrow 4

4 = (4 + ?) – (6 x 1)
\Rightarrow ? = 6
Well known slave kinematics to mechanically create a fixed point that coincides with the penetration point.

- Passive universal joint (Zeus)
- Remote center device (da Vinci, Artemis…)}
Option 1: passive joints

- Mobility \rightarrow Tx, Ty, Tz \rightarrow 3
- $3 = (4 + 5) - (6 \times 1)$

Zeus

- 5 joints
- -
- 3 motors
- 2 passive joints

P R R R R
Option 2: Remote Center of Motion

A classical spherical wrist does not rotate at the “right” point.

A RCM system does and thus “cancel” the constraint.
RCM or “The Magical Parallelogram”

- RCM with spherical links requires complex parts but can be more compact
 (See examples later)

- … while a basic parallelogram may do the job as well
RCM in motion

Da Vinci
RCM: other solutions…

From solid links to timing belts

ARTEMIS - FZK
Summary of solutions with kinematics constraint

Option 1 (passive joints)
- Few motors
- The trocar “forces” the passive joint to adapt “mechanically”
- No accurate positioning is needed
- Safety at the expense of motion accuracy and stiffness

Option 2 (active RCM)
- Few joints and motors
- The trocar has no influence on the arm motion
- BUT, the arm MUST be precisely located (positioning device + procedure)

Spherical wrist
Kinematics and motion control

• Carrier
 • Constrained kinematics / spherical wrist
 • Position control (geometric control approaches, dynamic decoupling control, …)
 • Force control

• High dexterity instrument

Interaction control

Teleoperated systems
Small occupancy robotics mechanisms for endoscopic surgery [Nakamura 2002]

Problem: « the occupation of the space in operating room! It sometimes prohibits surgeons from accessing patients in an emergency. Surgical robot systems should be small. »

Active trocar:

2-dof rotation
1-dof translation

Weight: 1kg including the drive part
Spherical wrist and portable solutions…

- Spherical optimized mechanism [Hannaford 04] wrt workspace requirements for MIS and practical joint limits

Blue DRAGON: system for measuring the position and orientation of two endoscopic tools along with the forces and torques applied to the tools in a minimally invasive environment [Hannaford 02].
Generic surgical tasks: tissue handling/examination, tissue dissection and suturing.

Analysis performed on an animal model in-vivo by 30 surgeons: 95% of the time the surgical tools positions encompass a 60º cone.

Reachable workspace of an endoscopic tool performed on a human model: to reach the full extent of the abdomen the tool needed to be moved 90º in the lateral/medial direction (left to right) and 60º in the superior/inferior (foot to head) direction.

⚠️ Design space optimization wrt mechanism isotropy
LER Light Endoscopic Robot [Berkelman 03] [TIMC, Grenoble, France]

Mass:
LER 625 g
Endoscope and Camera 300-500 g typical

Backdriveability:
Torque 0.45 N.m
Backdrive force on fully extended endosc. 1.5 N
Dimensions: height 75 mm, diameter 110 mm

Motion range: azimuth rotation 360° continuous, inclination to 80° from vertical, extension 160 mm

Max. speed: azimuth rot. 20 deg.s⁻¹, inclination 20 deg.s⁻¹, extension 25 mm.s⁻¹

Max. torque limit: 6 N.m

Max. force on fully extended endoscope: 20 N

Voice control
Spherical wrist and portable solutions…

MC²E [LRP, Paris, France]

- **Lower part:**
 - spherical 2-dof mechanism (Θ_1 and Θ_2)
 - intersecting axes realize fulcrum point
- **Upper part:** mounted on trocar (Θ_3 and d_4)
- **Currently 4-dof at distal end**
The bone-mounted miniature MARS robot [Shoham 2003]

- precise position and orientation of long, handheld surgical instruments, such as a drill or a needle, with respect to a surgical target
- small work volume enclosing a sphere whose radius is several centimeters
- lightweight and compact structure
- lockable structure at given configurations to provide rigid guidance
- capable of withstanding lateral forces resulting from instrument guidance of up to 10 N
- repeatedly sterilizable in its entirety or easily covered with a sterile sleeve
- quick and easy installation and removal from the bone.
Option 3 (spherical wrist)

- The wrist may require complex parts
- But it can be easily located on the trocar
- However it is still rather cumbersome on the patient if the surgeon has to locate 3 of them

Position control + versatile carrier
Contents

▷ Kinematics and motion control

• Carrier

 • Constrained kinematics / spherical wrist
 • **Position control** (geometrical control approaches, dynamic decoupling control,…)
 • Force control

• High dexterity instrument

▷ Interaction control

▷ Teleoperated systems
Option 3 : position control

Geometric constraints satisfaction of the penetration point solved by an optimization procedure [Michelin 04a]
Option 3 : position control

1st approach: kinematic dependant [Michelin 04a]

For a desired tool position, the elbow and wrist positions are computed by solving geometrical constraints ensuring the penetration point position.
Option 3: position control

2nd approach: kinematic independent [Michelin 04a]

Description of the constraint in terms of virtual mechanical joint
Background: Khatib’s work on redundant robots [Khatib 87]

\[\Gamma = \Gamma_{\text{task}} + \Gamma_{\text{posture}} \]

\[\Gamma_{\text{task}} = J^T F \]
External F force acting on the robot

\[\Gamma_{\text{posture}} = (I_n - J^T J^+ T)\Gamma_{\text{null}} \]

\[\Gamma_{\text{null}} : \text{arbitrary null space control torque which can be arbitrarily chosen} \]
Optimization: Γ_{null} is used to force to zero the distance between the instrument and the trocar or to minimize the contact force applied to the trocar

$$\Gamma_{\text{null}} = \alpha \nabla \phi \quad \Rightarrow \quad \Gamma = J^T F + (I_N - J^T J^+) \alpha \nabla \phi$$

Dynamic decoupling control scheme:
Experimental results

The algorithm has been implemented on an experimental platform D2M2:

- A 5-dof slave arm teleoperated by a master arm (Phantom 1.5) through Ethernet link and UDP protocol
- Equipped with direct drives actuators ➔ high dynamics, low friction
- F/T sensor fixed at the extremity of the carrier (between carrier and instrument)

Tested trajectories: straight line, circular and helicoidal paths

Sample rate: 0.7 ms
Computing time: 0.35 ms
Experimental results
Perspective: Control of tree redundant structures

Generic algorithm that makes it useable for controlling high dexterity redundant instrument
Kinematics and motion control

• Carrier
 • Constrained kinematics / spherical wrist
 • Position control (geometric control approaches, dynamic decoupling control,…)
 • **Force control**
 • High dexterity instrument

Interaction control

Teleoperated systems
Option 4: force control

- Mobility \Rightarrow Tx, Ty, Tz \Rightarrow 3
- $3 = (4 + 5) - (6 \times 1)$

5 joints & 5 motors

2 dof can be controlled with force measurements

(See details in the lecture of G. Morel)
A summary of solutions ...

- Option 1 (passive joints)
 - Few motors
 - The trocar “forces” the passive joint to adapt “mechanically”
 - No accurate positioning is needed

- Option 2 (active RCM)
 - Few joints and motors
 - The trocar has no influence on the arm motion
 - BUT, the arm MUST be precisely located (positioning device + procedure)

- Option 3 (spherical wrist)
 - The wrist may require complex parts
 - But it can be easily located on the trocar
 - However it is still rather cumbersome on the patient if the surgeon has to locate 3 of them
A summary of solutions ...

- Option 4 (position control)
 - Versatile robot
 - No accurate positioning

- Option 5 (force control)
 - The trocar "forces" the joint to adapt by means of measures + control software
 - A bit more complex

These two options may open a path to "multi-purpose" systems
Contents

 caractère

 Kinematics and motion control

 Carrier

 Constrained kinematics / spherical wrist
 Position control (geometrical approaches, dynamic decoupling control, …)
 Force control

 High dexterity instrument

 Interaction control

 Teleoperated systems
Instrument with high dexterity

Sensorized and Actuated Instruments for Minimally Invasive Robotic Surgery [DLR, Munich, Germany]

- Full manipulability: universal joint with intersecting axes for twisting the gripper about its longitudinal axis without pivoting the instrument shaft about the point of insertion.

- Prototype diameter: 10 mm

- Range of motion: 40° in both directions.
Instrument with high dexterity

- Manipulation forces: 20 N at the instrument tip
 - Gripping force: 20 N.

- Gripper actuated by one cable counteracted by a spring.

- The cable force necessary to close the gripper and securely hold a needle: 70 N.

- Maximum driving forces for the joint actuation: 100 N.

- To guarantee zero backlash, the cables are prestressed with the maximal expected driving force, accounting for a worst case cable force of 200 N.
Miniaturized Force/Torque Sensor

- 6-dof hexapod (high stiffness, adaptable properties, annular shape, scalability) with flexural joints
- Diameter: 10 mm
- Strain gauge sensor
- Forces: +/- 30 N
- Torques: +/- 300 Nmm
Instrument with high dexterity

Modular mechanical design:
- External Ø = 10 mm ; length = 24 mm (1 dof) and 36 mm (2 dof)
- Usefull stroke = ± 90° et > 360° (roll)
- Torque = 6 mN.m et 8 mN.m (roll)
- Brushless micro-actuators Ø 3 mm
- Magnetic resolver -> angular position
Proposed solution:

- 4 modules: 1-dof / 2-dof / 2-dof / Gripper
- Total Length = 11 cm
- On going manufacturing of the 1st prototype
- Module 1-dof: Ø = 1 cm, L = 3,6 cm
Instrument with high dexterity
Instrument with high dexterity

Hyper redundant miniature manipulator « hyper finger » for remote MIS in deep area [Ikuta 03]
Instrument with high dexterity

- Micro-robot MIPS with 3-dof for endoscopy (2000) [Merlet 00, INRIA Sophia, France]

Diameter 8.6mm, length 2.5cm
Half way to go …

Motion control

- Carrier
 - Constrained kinematics / spherical wrist
 - Position control (geometrical control approaches, dynamic decoupling control, predictive control,…)
 - Force control

- High dexterity instrument

Interaction control

Teleoperated systems

RCM: other “unique” solutions...