MICCAI '04

Cerebral damage in epilepsy: longitudinal quantitative MRI

NSE

Louis Lemieux UCL Institute of Neurology National Society for Epilepsy London

Outline

- Introduction
- Principles & methods of serial MRI analysis
- Application: prospective population-based longitudinal study
- 3T
- Conclusions & prospective

Longitudinal studies: why?

- Time is an essential aspect of disease
- Longitudinal vs Cross-sectional:
 - Subject as own control
 - Time (ageing) / cohort effects: baseline value?

Adapted from Diggle, Heagerty, Liang and Zeger

Longitudinal: a necessary condition to assess causality

Analysis of change: Brain

- Repeated measures:
 - 'High-res' T1 volumetric sequence
 - Fully automatic GM, WM, CSF segmentation: *Exbrain*
 - Sequential measures of:
 - Total grey matter
 - Total white matter
 - Total intracranial CSF
 - Tissue density distributions
- Difference image analysis:
 - Genuine change maps (structured noise map)
 - Visual, ROI analyses

Automatic segmentation – *Exbrain* Method

- Fully automatic and 3D
- Data preparation: Non-uniformity correction N3 [Sled et al. IEEE-MI 1998]

• Main steps:

- 0: Initial brain segmentation: rough 'scalp'
- 1: Segmentation of intra-sulcal & ventricular CSF
- 2: CSF and background intensity characterization
- 3: Final CSF segmentation
- 4: Refinement of the GM-CSF boundary
- 5: Connectivity: brain and intra-cranial (IC) masks
- 6: Brainstem & CSF cutting in axial plane
- \Rightarrow CSF and brain binary masks

Volumetry: penta-Gaussian fitted to IC mask IPD

- \Rightarrow CSF, GM and WM volumes
- Fuzzy classification

Automatic segmentation – Exbrain Accuracy (1)

Automatic segmentation – *Exbrain* Accuracy (2)

Comparison with *Brainweb*:

	Similarity	Vol error
Brain binary mask:	98%	+0.1%
GM:	95%	+2.0%
WM:	96%	-1.4%
CSF:	86%*	-5.0%
Intra-cranial:	96%	-1.3%

*: reference MNI CSF mask has 'imperfections'

Automatic segmentation – tissue distribution reproducibility (repeat scans; rigid-body registration)

[Lemieux et al. MRM 2003]

Automatic segmentation – volume reproducibility

Assess impact of following on registration reproducibility:

- Registration,
- Registration, intensity matching and 'recycling' of baseline values

	dG	MV	dW	MV	dTE	3Va	dCS	SEV	DIC	Vь
	Mean	CR	Mean	CR	Mean	CR	Mean	CR	Mean	CR
cm ^a					\frown					\bigcirc
Repeat-baseline	+0.83	24.0	+0.98	25.4	+1.82	35.2	+0.58	22.0	+2.39	29.0
Registered repeat-baseline	+2.72	26.4	+0.51	20.2	+3.24	24.2	+1.36	25.8	+4.59	20.8
Registered and matched repeat-baseline	+7.77	29.0	-3.96	9.50	+3.81	25.2	+0.75	24.0	+4.56	17.1
% of baseline volume					\smile					\smile
Repeat-baseline	+0.10	3.06	+0.19	5.0	+0.15	2,80	+0.27	10.42	+0.16	1.98
Registered repeat-baseline	+0.35	3.36	+0.10	3.98	+0.26	1.94	+0.64	12.20	+0.31	1.42
Registered and matched repeat-baseline	+0.99	3.70	-0.77	1.86	+0.30	2.02	+0.35	11.36	+0.31	1.16

IPD-Derived Tissue Volume Changes in 20 Normal Controls Scanned 8.2 Months Apart

Algorithm reality check: 'Double cortex'

Serial volumetry - difference image analysis

Register and intensity match Subtract

Matched repeat

Difference

Automatic difference noise level estimate & structured voxel threeholding

Structured ifference enuin Stohatogedmap

noise map (SNM)

Baseline

Repeat

Structured noise map (SNM)

[Lemieux et al., Med Imag Anal 1998]

ROI difference analysis: Hammers atlas

•49 ROIs
•20 brains
•*Exbrain*•Manually delineated ROI's
•2 observers
•SPM99/MNI space
•Maximum probability

[Hammers et al., *Human Brain Mapping* 2003; Hammers et al., *Human Brain Mapping* 2002]

Serial hippocampal volumetry

Coefficient of reliability: 78mm³

[Lemieux et al. MRI 2000]

The Wellcome II population-based study

Aims:

- To address the brain/hippocampal damage chicken & egg question:
 - To determine whether recurrent seizures are associated with secondary damage to the hippocampus and neocortex over 3.5 years
- To identify risk factors associated with cerebral damage in epilepsy

Wellcome II study - Experimental design

PHASE 1

153 chronic active epilepsy90 newly diagnosed epilepsy90 control subjects

Clinical data collected:

3.5 years

- head injuries
- alcohol consumption
- steroid use
- medical / psychiatric history
- seizure types + frequency
- status epilepticus
- AED usage, and episodes of intoxication

PHASE 2

122 chronic active epilepsy68 newly diagnosed epilepsy90 control subjects

 Baseline and repeat MRI scans performed on same scanner using identical acquisition sequences

Total: 560 T1 scans

Wellcome II study – Controls: change in total brain volume with age

Wellcome II - Group analysis: Hippocampal volume

Wellcome II - Group analysis: Total brain volume

Wellcome II - Group analysis: Total brain volume

Wellcome II – Difference image analysis: Patterns of neocortical change

No change

Generalized volume loss

Focal neocortical volume loss

Focal / generalized neocortical signal change / volume loss:

- 54% of chronic epilepsy cases
- 39% of newly diagnosed cases
- 24% of controls

Wellcome II – Main biological conclusions

- Baseline reductions in hippocampal and neocortical volumes could be attributed to **antecedent** neurological insults.
- The rate of hippocampal and neocortical volume loss was strongly associated with **age** but **not** overt **seizures**.
- A prior neurological insult was associated with an increased rate of cerebral atrophy.
- Structural damage primarily the result of an **initial precipitating insult**.
- Continuing loss of brain volume can occur but is subtle and often remote from the putative epileptic focus.

See: Liu RSN et al. *NeuroImage*, **14**(1): 231-243, 2001. Liu RSN et al. *NeuroImage*,**20**:22-33, 2003. Liu RSN et al. *Ann. NeuroI.*, **52**: 573-580, 2002. Liu RSN et al. *Ann. NeuroI.*, **53**(3): 312-324, 2003.

Wellcome II – Main methodological conclusions

- Automatic registration & segmentation successful for all 280 scan pairs
- Automated brain and IC segmentation provides objective <u>baseline</u> values and normalisation data
 - •Time saving, too
- Repeat brain volume measures adequate for group analyses
- Manual segmentation of hippocampi: very time consuming
- Difference image analysis much more sensitive

3D IrpFSPGR @ 3T GE 8-channel (RX) headcoil

	Slice thickness: 1.1mm Scan time: 7:27	WM: GM: CSF: Bkgnd: CNR _{GM}	μ 2800 2200 1000 125 -wm=9 C	S (65) (65) (50) (30) CNR _{GM-C}	SNR 43 34 20
1.5T 'standard' TX/RX headcoil:	Slice thickness: 1.5mm Scan time: 6:56	WM: GM: CSF: Bkgnd: CNR _{GM}	µ 105 90 20 4 -wм=4 С	s (4) (4) (4) (3) CNR _{GM-C}	SNR 26 23 5

3T multi-channel headcoil: non-uniformity

Problem:

Solution:

N3:

Tissue maps @ 3T: repeat scan results

Prospective

- Increase sensitivity: other sequences [Bosc et al], etc
- Theoretical
 - Increase sampling
 - Identify optimal inter-scan interval
 - Modelling of change?
- Methodological developments:
 - Hippocampal segmentation automation (differential)
 - Improve patient repositioning
 - Differential analysis of other sequences
 - Difference volume analysis by tissue type
 - Whole brain; ROI atlas
 - Long term studies:
 - Adapt to scanner changes

Automated hippocampus (& amygdala) segmentation: Fast algorithm

hippocampus
 amygdala
 Execution time: ~ 2 min

Cognitive Neuroscience and Brain Imaging Laboratory, Paris

[Chupin M et al, submitted]

Acknowledgements

RSN Liu	G Bell	JS Duncan
SM Sisodiya	B Kendall	PA Bartlett
SD Shorvon	J Stevens	JWA Sander
J Burdett	A Hammers	

The Wellcome Trust National Society for Epilepsy

Wellcome II - main publications

- Lemieux L et al. Hippocampal and cerebellar volumetry in serially acquired MRI volume scans.
 Magn. Reson. Imaging, 18(8): 1027-1033, 2000.
- Liu RSN et al. Increase in brain size with abstinence from alcohol

Lancet, 355: 1969-1970, 2000

• Liu RSN et al. A longitudinal quantitative MRI study of community-based patients with chronic and newly diagnosed seizures: methodology and preliminary findings.

NeuroImage, **14**(1): 231-243, 2001.

- Liu RSN et al. A longitudinal study of normal ageing using quantitative MRI and difference image analysis.
 NeuroImage, **20**:22-33, 2003.
- Liu RSN et al. The structural consequences of newly diagnosed seizures.

Ann. Neurol., **52**: 573-580, 2002.

• Liu RSN et al. Progressive neocortical damage in epilepsy.

Ann. Neurol., **53**(3): 312-324, 2003.

 Lemieux L et al. Automatic, accurate segmentation of the brain and intracranial cerebrospinal fluid in T1-weighted volume MRI scans of the head and its application to serial cerebral and intracranial volumetry.

Magn. Reson. Med., 49: 872-884, 2003.