Introduction

MICCAI tutorial on grid services for medical image processing and registration
Agenda

- 9h Grids, a tool for compute and data-intensive medical imaging applications
 Johan Montagnat
- 9h30 Mammography analysis on grids
 Mike Brady
- 9h50 Biomedical Informatics Research Network
 Ron Kikinis
- 10h10 IXI e-Science project
 Derek Hill
- 10h30 Coffee break
- 10h50 The case of medical image registration
 Daniel Rueckert
- 11h20 Round table: our vision of grid technology for medical image registration, trends and problems, opened discussion, call for participation
 X. Pennec, D. Hill, J. Montagnat
- 12h20 Lunch
What are grids?

- The myth: providing **unlimited** computing power by letting the user **transparently** access to **infinite** Internet resources.

- Early grid adopters
 - Data storage: napster
 - Computation: SETI@home
 - Information: web

Client-server technology

The infamous electrical network analogy
What are grids?

- **Assembling** resources
 - Storage
 - Computing
 - Network

- **Federating** users
 - Large scale user communities (Virtual Organizations)
 - Ease exchanges

- **Pushing** standards
 - Communication protocols
 - Data representation and formats
 - Computation control languages

- The real grid potential is in **sharing** resources, data, and knowledge.
New bottles around old wine?

- **Scalability/Extensibility problems**
 - Load balancing
 - Parallelization
 - Decentralization
 - Fault tolerance
 - Security...

- **Distributed computing** has addressed these kind of problems for decades!

- **New wine**
 - Interoperability
 - Authentication and authorization certificates and policies

- **Peer-to-Peer (P2P) or agent technologies mature**
 - Alternative to the client-server approach
The new factors empowering grids

- **Faster networks**
 - Growth of network bandwidth vs growth of computing/storage: cheapest data exchanges

- **Cheap PCs**
 - Successful development of cluster computing
 - Some degree of standardization of hardware and software

- **Standardization bodies**
 - W3C http://www.w3c.org/ (HTTP(S), *ML, SOAP, WSDL...)
 - ...

- **Grid marketing**
 - Industry adoption
All is becoming *gridified*

- **Overuse** of “grids”
 - grid = parallelism
 - grid = cluster computing
 - grid = just name it
 - grid or grids?

- **Over-expectations**
 - in grids deployment schedule
 - in grids capabilities
 - in transparency of grids from the user point of view

- **PCs clusters are:**
 - cheap... but administrators are not
 - able to deal with embarrassingly parallel applications

- **Supercomputers and dedicated systems have their own playground**
From PCs to supercomputers

- Several kind of grids:
 - network of computers
 - network of clusters
 - network of supercomputers

- Single PC capabilities
 - powerful, yet limited capabilities of a each host
 - general purpose network connection

- Parallelism
 - trade-off between splitting and network overhead

- Supercomputers
 - lowest communications overhead, large splitting

- Global Grid
 - Network of clusters and supercomputers
 - Resource brokering among available resources
Grids are emerging technologies

- Some components available
 - User authentication
 - High performance data transfer
 - Data managers with replication and metadata
 - Resource brokering...

- Still a lot to be done
 - Performance issues in scalability
 - High level representation of data
 - Transparency of the underlying infrastructure...

- Medical data processing is very complex
 - This community has one of the most challenging requirements list
 - Confidentiality of data and security requirements
 - Parallel processing, interactive jobs, emergency situations...
Semantics

▶ Too much information kills information
 • To find some information on the web: google
 • Try “Mike Brady” keyword...

▶ Semantic web
 • Common framework that allows data to be shared and reused across applications
 • Give explicit meaning to information
 • Resource Description Framework

▶ Semantic grids
 • Propagate to grids what may become the web

▶ Ontologies, OWL
 • Formally describe the meaning of terminology used in a domain
 • Enable processing of information rather than just delivery to humans
Real grid enabled applications

- Very few decentralized, scalable algorithms
 - such as Domain Name Service
- How does Google backup the web?
 - 6 centers
 - 20000 PCs
 - Load distribution
- Embarrassingly parallel applications
 - Easily distributed computations
 - Just bring in more CPU and bandwidth
- More to learn from P2P and agent technologies
 - Lot done in the field of data management
 - What about computations, knowledge extraction?
Application areas

- High Energy Physics
 - Pb of data generated per sec as the output of the Large Hadron Collider
- Astronomy
 - Astronomy images
- Earth Observation
 - Satellite images
- Geophysics
 - Sismic data revealing underground structure
- Aeronautics, industry
 - Finite Element Modeling, etc.
- ...
Sharing to get stronger

- Unlike electrical power, adding computers is not equivalent to add volts
 - Distributed computing conjecture: a parallel machine performance is lower than the sum of individual processors performance

- Humans are selfish
 - Every user wants to use other's resources without seeing others using its resources

- The real grid potential is in sharing
 - Datasets: to create virtual databases, esp. for rare data
 - Algorithms: to foster reusability and comparisons
 - Resources: to face computation picks
 - Enforce standards
Medical data on grids

- Data storage and archival
 - 10 Tb of medical images/hospital/year
 - Need for long term archival (20 to 70 years)

- Datasets
 - Large scale data sets
 - Statistics, epidemiology
 - Rare diseases
 - Personalized atlases construction

- Data representation
 - Medical images
 - Metadata
 - Ontologies
Security of medical applications

- **Authentication and Authorization**
 - Certificate authorities issuing certificate pairs
 - Asymmetric certificate based authentication
 - Authorization policies enforcement

- **Data access control** at individual level
 - Physicians
 - Patients
 - Researchers

- **Delegation**
 - Granting access rights

- **Encryption** for data storage and transfer
 - Best effort privacy protection
 - Key-based data encryption
Biomedical computing

- Embarrassingly parallel applications
 - databases processing
 - bioinformatics
- Parallel computations
 - costly processings
- Interactive computations
 - resources reservation
 - user supervision and validation
- Emergency situations
 - resources preemption
- Algorithms warehouse
Standardization

- Medical data representation
 - File level: DICOM, Analyse...
 - Database level: Data storage and mediators
 - Inter-sites: ontologies

- Algorithms reusability
 - Image formats
 - Input/output
 - Parameters

- Unique opportunity to enforce standards
Medical algorithms assessment

- **Sharing data**
 - Common datasets

- **Sharing algorithms**
 - Testing others algorithms

- **Sharing procedures**
 - Common test suites

- **Sharing computing resources**
 - Larger assessment studies

- Empowering testing and comparisons
Grid infrastructures in Europe

- **EGEE**
 - 27 countries, 70 partners
 - Production platform
 - 8000 PCs to be deployed in 2 years
 - LCG2 middleware (Globus+DataGrid based)

- **DEISA**
 - http://www.deisa.org/
 - Consortium of supercomputing centers
 - Build a distributed terascale computing facility
 - Tight coupling of supercomputing centers by high bandwidth networks
References and related events

▶ **HealthGrid** association
 - [http://www.healthgrid.org/] (image)
 - HealthGrid conference (next event in Oxford, 2005)

▶ **BIRN**: Biomedical Informatics Research Network
 - [http://www.nbirn.net/]

▶ **TeraGrid**: [http://www.teragrid.org/]

▶ **UK e-Science**: [http://www.rcuk.ac.uk/escience/]
 - **myGrid**: [http://www.mygrid.org.uk/], In silico biology
 - **IXI**: [http://www.ixi.org.uk/], medical imaging

▶ **Mammogrid**, [http://mammogrid.vitamib.com/]

▶ **GEMSS**, [http://www.ccrl-nece.de/gemss/]

▶ **Crossgrid**, [http://www.eu-crossgrid.org/]

▶ ...
Conclusions

- Grids are **emerging** technologies
 - Early adopters
 - Evolving field
- Yet, they are addressing medical imaging challenges
 - Standards and tools arising
 - Some successful applications deployed
 - The tool creates the need: new applications will emerge from grid infrastructures
- Need to **federate** the biomedical community
 - Strengthen the community
 - Deploy large scale infrastructures
- Need **standards**
 - To enable flexibility and interoperability
Meeting follow-up

- http://www.i3s.unice.fr/~johan/miccai/
Agenda

- 9h Grids, a tool for compute and data-intensive medical imaging applications
 Johan Montagnat
- 9h30 Mammography analysis on grids
 Mike Brady
- 9h50 Biomedical Informatics Research Network
 Ron Kikinis
- 10h10 IXI e-Science project
 Derek Hill
- 10h30 Coffee break
- 10h50 The case of medical image registration
 Daniel Rueckert
- 11h20 Round table: our vision of grid technology for medical image registration, trends and problems, opened discussion, call for participation
 X. Pennec, D. Hill, J. Montagnat
- 12h20 Lunch