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Computational Anatomy: Measuring Anatomical Structure

1)  A reference template (e.g. an atlas or an average shape) is the unit
2)  A shape transformation quantifies the shape characteristics of
     and individual brain with respect to the template

3)  Two shapes are compared by comparing
     the corresponding transformations

       Template              Subject                   Warped template              warping of a grid



• The deformation function measures the local deformation of the template: 

 Deformation 1            Deformation 2

• Deformation function measured after adaptation of the template to each shape

Local measurements of shape characteristics can be therefore
measured by analyzing the deformation functions with standard
statistical methodologies

   Template          Shape 1         Shape 2

Red: Expansion
Green: Contraction

Davatzikos et.al., J. Comp. Assist. Tomogr., 1996



Problems when using the warping transformation:

•  The target anatomy is assumed to be a

diffeomorphism of the template

• Residual information is discarded

• A very accurate warping requires time and

computational resources

Use the pair (Transformation, Residual) to measure shape



RAVENS: Mass-preserving shape transformations
for morphological analysis
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RAVENS = Regional Analysis of Volumes Examined in Normalized Space





 

Example of Detection of Subtle Change:



 

Example of Detection of Subtle Change:



•Localized atrophy identified via t-maps of the RAVENS images

•Atrophy detected in the two gyri: PCG and STG

•T-maps are overlaid on the average WM RAVENS map of 24 subjects

Davatzikos et.al., NeuroImage, 2001

Validation Experiments:



Average brain from 158 subjects in BLSA project

ModelAverage

TemplateAverage

“HAMMER” image warping, by
Dinggang Shen (IEEE-TMI, 2001)



Significant 4-year GM changes in 107 older adults

Resnick et.al., 2001, Cerebral Cortex



Finding associations between local atrophy and MCI

Gray matter White matter 



Longitudinal changes in WM/GM MR signal contrast

Demyelination or other degenerative processes

Scale of t-statistic of
longitudinal changes

Shape and signal changes with aging were uncorrelated

Davatzikos and Resnick, 2000



color coded FA map orientation map

Measuring longitudinal change in early postnatal
development of the mouse brain

•  Standard T1, T2 imaging is inadequate Æ Diffusion tensor
imaging



Day 10

Day 2 Day 5 Day 7

Day 15 Day 30 Day 80

Longitudinal change of fractional anisotropy
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• Cortex
• Caudate-putamen
• Internal capsule and ventr/hippo. commisure
• Corpus callosum
• Hippocampus
• Splenium of the corpus callosum
• Anterior commisure

Correlation of FA and age
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Young mice
(days 2 – 7)

Adolescent
mice (days

10 – 30)

Old mice
(days 45 –

80)

Difference
between
young and
adolescent
mice

Difference
between old
and
adolescent
mice



Problem with 3D warping:

-- Either independent warping between the template and the
individual, for each time-point

-- …or warping from time t-1 to time t, and from time t to time
t+1, etc.

Sequence of independent warpings Æ inconsistencies

4D Warping



4D template warping

•  All temporal images of the same individual are
  simultaneously considered in image warping

9 Robust anatomical correspondence detection
9 Smooth and temporaly consistent transformations

subject

Year t-1 Year t  Year
t+1

template

Year t-1 Year t  Year
t+1



Mdl

Warped
3D
images

Warped
4D
image

Year 1 Year 2 Year 3 Year 4 Year 53D warping Model 4D warping

Warping consistence - comparison



Problems when tumors are present:

•  The anatomy is partially obscured by edema

•  Extreme deformations make anatomical matching
difficult

•  Part of the tissue has died

Need for 
• Biomechanical models of soft tissue deformation
• Statistical models for estimation of obscured anatomy

and for generation of atlas templates that look more like 
deformed anatomy

3.   Deformable registration methods robust to deformations



Fundamental Limitation: Estimating the inverse deformation
        field is a very ill-posed problem

         Atlas                 Unknown normal brain      Patient’s brain deformed by tumor

Unknown initial tumor position

Edema



Biomechanical
simulation

Statistical
Estimation

Training stage

Estimation stage

Deformable
registration stage



Biomechanical Modeling



Biomechanical Modeling
Motivation

Generate biomechanical simulations of deformations of interest for the purpose of training
statistical models used to predict those deformations.
Approach

Automatically construct biomechanical
models from segmented scans

(a) (b)

(c)

(d)
(e)

Post-
processing

(a) A regular grid of small cubes is cast over the segmented
volume. (b) Cubes are tesselated into tetrahedra. (c) Mesh
refinement by subdivision of tetrahedra using edge split and
LEPP. (d) Making the mesh conform to the geometry of the
segmented volume. (e) Post-processing for improvement of
quality of elements for FE analysis.

Use Finite Element Analysis (FEA) to
simulate deformation based on realistic
tissue properties and boundary conditions

A mechanical FEA simulation of growth of a tumor using a mesh
generated from a normal brain scan.



Biomechanical
simulation

Statistical
Estimation

Training stage

Estimation stage

Deformable
registration stage



Deformable registration of tumor-occluded brain images

Original sequence:
5 scans, total 2 years apart

Result of image warping

Confidence of 
matching map

Magnitude of

deformation



Overlay of 2nd
time-point:
warped original +
2nd scan

Overlay of 5th
time-point:
warped original +
5th scan



Biomechanical
simulation

Statistical
Estimation

Training stage

Estimation stage

Deformable
registration stage



s = [ s1 , s2]
•  Perform a number of forward
biomechanical simulations

•Estimate joint pdf

We will generate training samples, using tumor growth simulation



2)  MAP estimation framework:



s1 s2

IEEE Trans. on Med. Imaging, 20(8):836-843, 2001 



Biomechanical
simulation

Statistical
Estimation

Training stage

Estimation stage

Deformable
registration stage
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Day 10

Day 2 Day 5 Day 7

Day 15 Day 30 Day 80

…after nonlinear warping to the template (Day 10)

Voxel-based or multi-variate analysis of FA changes



Average Hippo Volumes of 9 Subjects
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4D results

3D results

Manual expert:  5.5% 
4D HAMMER:  5.7% 
3D HAMMER:  2.1%

Results – from 9 BLSA subjects




