Montreal Neurological Institute/Hospital

Change Detection and Quantification in Multiple Sclerosis

D. Louis Collins Sept 26, 2004

Multiple Sclerosis

- Motivations
- Volume change
- Global (BICCR)
- Regional (GM, ventricels, lobes)
- Local (around lesions)
- Clinical trial
- BICCR results
- VBM results
- Deformation modeling
- Where and When?

Motivation

- Clinical surrogates of disease burden in MS are highly variable (EDSS, MSFC)
- MRI shows lesions in vivo

$\mathrm{T}_{\mathrm{I}}-\mathrm{w}$
PD

T_{2}-w

MTR

Gado

Motivation

- Clinical surrogates of disease burden in MS are highly variable (EDSS, MSFC)
- MRI shows lesions in vivo
- MRI = 10 * clinical activity

MRI activity

MRI shows brain-atrophy in MS

Motivation

- Clinical surrogates of disease burden in MS are highly variable (EDSS, MSFC)
- MRI shows lesions in vivo
- MRI = 10 * clinical activity
> MRI-based surrogates of disease burden

MRI-based surrogates

- T2 and Gado-based lesion metrics
- have shown treatment effects
- are weakly correlated with disability
- CNS atrophy
- associated with neuronal/axonal loss
- associated with irreversible neurological impairment
- strong correlations with disability
$\Rightarrow \quad$ CNS atrophy may be a better surrogate

Methodological Requirements

- Reproducible
- Sensitive to change
- Accurate
- Practical

Data acquisition issues

- Resolution requirements
- Thin slices to reduce partial volume effects
- Contiguous acquisitions (no slice gap)
- Prefer 3D acquisitions over 2D
- Contrast
- T1 with or w/o T2/PD
- Time constraints
- Short acquisition to minimize motion artifacts

BICCR: Brain to IntraCranial Capacity Ratio

PDw MRI

T2w MRI

Measuring Changes in Brain Volume Atrophy

- Scan-rescan COV of BPF, BICCR = 0.2\%
- Smallest detectable change ~0.5\%

BICCR by Age: Normal Controls

Data from ICBM project, courtesy A Evans
In agreement with the work of

- Jernigan (1990) aging associated with \uparrow CSF, \downarrow GM
- Gur (1991), Blatter (1995), Coffey (1998) larger loss in men than in women

BICCR in MS

BICCR by EDSS

	Spearman	P	R^{2}
ALL $(n=28)$	-0.496	.0005	24%
RR $(n=48)$	-0.321	.01	9%
SP	-0.682	.0005	46%
$(n=22)$			

BICCR by Duration of Disease

Clinical Trial Analysis

Analysis of PRISM baseline-year 2 data

BICCR: total loss over 2

 (all data)- No differences between groups when comparing the BICCR value at baseline, year 1 or year 2 .
- Repeated measures ANOVA showed no differences between groups for year 2 or for the entire 2 year period.

BICCR: loss year 1

All data

- However, there was a slight difference ($\mathrm{p}=0.00448$) between rebif44 and placebo in year 1 , with rebif44 causing a larger brain volume loss than placebo (or rebif22, but the latter was not significant).

Post-hoc	1.00000		
Tukey:	0.48267	1.00000	
	0.00421	0.11984	1.00000

Detection of Regional Atrophy

ANIMAL+INSECT

classification

Regional GM Quantification - Method

Regional GM Volumes

whole brain:
NC $>$ MS, $t=4.4, p<.0001$
$N C>R R, N C>S P, F=12.3, p<.0001$
NC > RR > SP
$\mathrm{F}=21.5, \mathrm{p}<.000 \gamma$

NC > SP
$\mathrm{F}=6.8, \mathrm{p}=.0003$

NC > SP
F = 9.9, $p<.0001$
$N C>R R>S P$
$F=16.2, p<.0001$

NC > SP
$\mathrm{F}=8.2, \mathrm{p}<.0001$

NC > SP
$\mathrm{F}=8.5, \mathrm{p}<.0001$

Local atrophy estimation

Longitudinal registration

3D Deformation field

Results-Local Atrophy

patient
control

What about voxel-based image analysis of groups?

(SPM, VBM)

Stereotaxic Space

J. Talairach and P. Tournoux, Co-planar stereotactic atlas of the human brain: 3-Dimensional proportional system: an approach to cerebral imaging, Stuttgart, Georg Thieme Verlag, 1988

- based on anatomical landmarks (anterior and posterior commissures)
- originally used to guide blind stereotaxic neurosurgical procedures (thalamotomy, pallidotomy)
- now used by NeuroScientific community for interpretation and comparison of results

Difference images

Year 1-0 Year 2-1 Year 2-0

Treatment 1

Treatment 2

But what is really significant?

Voxel based morphometry

Difference images

Year 1-0 Year 2-1 Year 2-0

Treatment 1

Treatment 2

Voxel-based morphometry

Deformation Modeling and the ms-mni database

(a.k.a. pretty blobs)

Andrew L Janke rotor@cmr.uq.edu.au

Why?

- Provides a wealth of preliminary information on where to direct further processing
- "VBM with a time dimension"
- Possible prediction on novel patients

Previously investigative techniques

- VBM - Voxel based morphometry
- Wright et al,. Neurolmage. 1995
- Ashburner et al, Neurolmage. 1999
- Deformation based morphometry

Janke et al 2000

- Ashburner et al, Human Brain Mapping. 2000
- Vector deformations analyses
- Ashburner J et al, Human Brain Mapping. 1998
- Gaser C et al, Neurolmage. 1999
- Thompson et al, Cerebral Cortex. 1998

The Processing Pipeline

- Data
- ~4200 data sets, 780 scanning points, 230 patients
- Pre Processing
- Rough inter-scan normalisation via clamping between histogram thresholds
- Intensity corrected (N3)
- Registration
- Modeling

MS patient progression \#1

MS patient progression \#2

It's average space Jim ...

 (but not as we knew it)- Linear averaging is not good enough for abnormal structure
- Need custom targets on a per-disease or even per-study basis
- Also need non-linear average targets to register to.
- Chickens and eggs....

Target creation

- First register all linearly to a model (icbm_152)
- Build a new model (ms01lin)
- Nonlinearly register all to this model again
- Repeat....

Mean and SD Evolution

Once finally in average space..

- Non-linear deformations are computed between each of the time points
- The non-linear grids and then resampled to the average space
- Yes, transforming a non-linear transform with a non-linear transform.
- Or, just compute them in average space (less clean but probably easier to understand)

Deformations for an Individual

Deformation Metrics 1

- Volume Loss / Increase
- Volume dilation - Trace of the deformation field. (Worsley \& Chung 1999)
- Intensity encodes the magnitude of the dilation

Convergent

Divergent

EDSS

Duration

Changing change and change progression

Cheat Sheet

Conclusions

- Ability to follow longitudinal change
- Methodology is not limited to any particular score
- Characterisation and localisation
- Caveat Emptor
- Choice of deformation metric and Interpretation
- A physiological process should be easily inferable

